The importance of host genetic factors in *Helicobacter pylori* associated disease

Emad M. El-Omar

H. pylori infection and gastroduodenal diseases

- An important human pathogen
- Causally associated with serious GI disease including peptic ulcer disease and gastric cancer
- Since 1994, classified as a GROUP 1 (DEFINITE) human carcinogen
- Nobel Prize in Medicine/Physiology 2005 (Marshall & Warren)

The gastric cancer phenotype

- Severe inflammation
- corpus predominant pattern
- gastric atrophy (MAG)
- Hypo/achlorhydria
- Bacterial overgrowth

H. pylori and risk of gastric cancer

TABLE 2. THE DEVELOPMENT OF GASTRIC CANCER IN H. PYLORI-POSITIVE PATIENTS
ACCORDING TO ABNORMALITIES AT BASE LINE.

ABNORMALITIES AT BASE LINE	ALL H. PYLON:— POSITIVE PATIENTS (N = 1246)	H. PILORI- POSITIVE PATIENTS WITH GASTRIC CANCER (N=36)	RELATIVE RISK (95% CI)*	H. PYLORI- POSITIVE PATIENTS WITH INTESTINAL- TYPE CANCER (N = 23)	H. PYLORI- POSITIVE PATIENTS WITH DIFFUSE- TYPE CANCER (N = 13)
	no.	no. (%)		n	D.
Grade of strophy					
None or mild†	381	3 (0.8)	1.0	0	3
Moderate	657	18 (2.7)	1.7(0.8-3.7)	9	9
Severe	208	15 (7.2)	4.9 (2.8-19.2)	14	1
Distribution of gastritis					
Antrum predominant†	699	2(0.3)	1.0	0	2
Pangastritis	337	14 (4.2)	15.6 (6.5-36.8)	4	10
Corpus predominant	210	20 (9.5)	34.5 (7.1-166.7)	19	1
Intestinal metaplasia					
Absent†	782	6 (0.8)	1.0	1	5
Present	464	30 (6.5)	6.4 (2.6-16.1)	22	5 8

^{*}CI denotes confidence interval.

Uemura et al, NEngl J Med, 2001; 345:784-789

Role of host genetic factors

[†]Patients in this category served as the reference group.

Host factors: Role of acid inhibition

What endogenous substance could have a similar effect?

Candidate genes

- Pro-inflammatory
- Relevant to H. pylori infection
- Central role in gastric acid physiology
- Polymorphic gene with functionally relevant genetic variants that are frequent in the population
- *IL-1B* (encoding IL-1β)
- IL-1RN (encoding the naturally occurring antagonist)
- TNFA (encoding TNF-α)
- IL-10

IL-1/TNF-A genotypes & risk of hypochlorhydria/atrophy

LOCUS	ODDS RATIO	95% CI	
<i>IL-1B</i> -511*T+ <i>IL-1B</i> -31*C+	9.1	2.2-37	
IL-1RN*2/*2	5.6	1.8-17	
TNF-A-308*A+	3.2	1.3-8.0	

El-Omar et al, Nature, 2000; 404: 398-402

Role of composite pro-inflammatory polymorphisms on risk of non-cardia gastric cancer

Non-	cardia gastric ca	Controls (N=210)	
N	Odds ratio	95% CI	n
22	1.0	(ref)	75
74	2.9	(1.6-5.1)	85
62	5.4	(2.7-10.6)	46
30	27.3	(7.4-99.8)	4
	N 22 74 62	N Odds ratio 22 1.0 74 2.9 62 5.4	N Odds ratio 95% CI 22 1.0 (ref) 74 2.9 (1.6-5.1) 62 5.4 (2.7-10.6)

Pro-inflammatory polymorphisms: *IL-1B*-31/-511*2, *IL-1RN**2/*2 *TNF-A*-308*2, *IL-10* ATA/ATA

El-Omar et al, Gastroenterology, 2003; 124: 1193-1201

Synergistic effect of *H. pylori* virulence factors & host genetic factors

- Figueiredo et al, JNCI 2002; 94: 1680-1687
- 222 GC cases vs. 221 controls
- cagA, vacA s & m genotypes
- *IL-1B-511C>T & IL-1RN*
- For each combination of bacterial/host genotype, the odds of having gastric carcinoma were greatest in those with both bacterial and host high-risk genotypes

Synergistic effect of *H. pylori* virulence factors & host genetic factors

- vacAs1/IL-1B-511*T: OR = 87 (11 to 679)
- vacAm1/IL-1B-511*T: OR = 7.4 (3.2 to 17)
- $cagA^+/IL$ -1B-511*T: OR = 25 (8.2 to 77)
- vacAs1/IL-1RN*2/*2: OR = 32 (7.8 to 134)
- vacAm1/IL-1RN*2/*2: OR = 8.8 (2.2 to 35)
- $cagA^+/IL_-1RN^*2/*2$: OR = 23 (7.0 to 72)

H^+/K^+ -ATPase-IL-1 β transgenic mice progress to atrophy, severe dysplasia and even cancer

H+/K+-ATPase-IL-1β transgenic mice

- Produce high IL-1 β in gastric tissue
- Achlorhydric
- Progress to atrophy, severe dysplasia and cancer
- Process accelerated by H. felis infection
- First example of a single cytokine transgenic gastric cancer model

Important host genetic factors

- Cytokine gene polymorphisms
 - > IL-1B-31/-511 C/T
 - > TNF-A-308 G/A
 - > IL-10 ATA/ATA haplotype
 - > IL-8-251
 - > SHP-2
- Innate immune response
 - \rightarrow TLR4(TLR4+896 A>G = Asp299Gly)
 - > Mannose binding lectin (MBL2 HYD haplotype)

Important host genetic factors

Genes of the innate immune response

Toll-like receptor 4

TLR4 mutations

- Functional polymorphisms: hyporesponsiveness to LPS
- 2 common SNP polymorphisms in coding region
 ➤ Asp299Gly & Thr399Ile
- Asp299Gly: missense mutation in 4th exon of TLR4, alters extracellular domain of the receptor
- LPS hyporesponsive = prone to sepsis by other gram
 ve bacteria

Effect of TLR4+896 A>G on risk of non-cardia gastric cancer in Caucasians

TLR4+896 Genotype	N= 354/419	EGA Study N= 184/211 OR (95%CI)	Combined OR (95% CI)
A/A	1	1	1
A/G + G/G	2.5 (1.6-4.2)	2.0 (1.04-4.1)	2.4 (1.6-3.4)

IL-1 markers in non-Caucasian populations ??

Effect of IL-1 markers on risk of gastric cancer in non-Caucasian populations

- Effect is variable
- May depend on background prevalence of gastric cancer
- Definite association with pre-cancerous abnormalities and the gastric cancer phenotype but association with cancer itself more difficult to demonstrate
- Role of "haplotype context"

IL-1B markers and haplotype context

- Chen et al Human Molecular Genetics, 2006
- Sequenced IL-1B gene from genomic DNA of Caucasian & African-American subjects
- Identified four promoter SNPs active in transient transfection reporter gene assays:

-3737, -1464, -511, -31

- Examined nuclear protein binding to promoter sequence oligonucleotides containing different alleles of the SNPs
- Discovered functionally significant interactions between SNPs according to haplotype context

IL-1B markers and haplotype context

- Variant alleles at -31(C) and -511(T) enhance transcriptional activity
- -1464 and -3737 polymorphism both exert modifying effects on transcription by interacting with specific alleles at -31 and -511
- The co-inheritance of these alleles is variable in different ethnic groups and should be fully assessed in the context of risk of disease outcome

Role of diet as a modifier of *IL-1B* genetic risk

- Shen et al studied the effect of *IL-1B* genetic variants on the risk of metabolic syndrome (J Nutrition 2007)
- IL-1B genetic variants were associated with measures of both chronic inflammation and risk of developing metabolic syndrome
- Genetic influence was more evident among subjects with low (n-3) polyunsaturated fatty acids (PUFA) intake
- Varied diet, excessive or deficient in certain nutrients, may potentially modulate genetic risk

Genetic predictors: are they useful?

- The genetic markers are polymorphisms that are relatively frequent in the general population
- They often have subtle functional effects that have not been fully elucidated
- Their frequency varies across different ethnic backgrounds and their impact on cancer risk is modest (they are not like inborn errors of metabolism)
- Are they useful for screening? Not yet
- So, what are they useful for?

Genetic predictors: are they useful?

- A pro-inflammatory genetic makeup is a risk factor for serious complications of H. pylori infection, including gastric cancer
- The genetic markers highlight the important role of chronic inflammation in this disease
- The aetiology of this inflammation is obvious:
 H. pylori infection
- The only way to prevent the cancer is to remove the infection or reduce the inflammation

Host genetics and oesophageal disease

- Most of the work has focused on squamous cancer
- Very little data on adenocarcinoma
- Recent interest in the inflammation pathways and their genetic determinants

Effect of IL-1 markers on risk of GERD

- Queiroz et al: Gastroenterology, 2004; 127: 73-79
- 383 subjects: 285 patients without GERD & 98 with
- GERD patients: 52% Grade 1, 35.7% Grade 2, 8.2% Grade 3, and 4.1% Barrett's
- Examined IL-1B-31/-511, IL-1RN & TNF-A-308
- Also examined the contribution of CagA status

Variables associated with GERD in *H. pylori* +ve patients

Covariate	OR	95% CI	P
Corpus gastritis	0.72	0.55-0.95	0.02
cagA+ve	0.35	0.17-0.58	0.002
IL-1B-31*C	0.63	0.38-0.99	0.05
IL-1RN*2*2	0.53	0.29-0.92	0.004

Queiroz et al, Gastroenterology, 2004; 127: 73-79

Adjusted OR's for GERD in *H. pylori* +ve & -ve patients

	H. pylori negative			H. pylori positive		
	OR	Р	95%CI	OR	Р	95%CI
<i>IL-1B</i> C-511T						
C/C	1		-	1	12	-
C/T	1.94	0.30	0.55-6.81	1.24	0.52	0.64-2.40
T/T	0.35	0.39	0.03-3.84	0.05	< 0.001	0.01-0.26

Ando et al, GUT, 2006

IL-1/TNF-A genotypes & risk of different types of UGI cancer

	OAC	GCAC	NCGAC
<i>IL-1B-</i> 511*T+/	1.1	1.1	2.8
<i>IL-1B-</i> 31*C+	(0.7-1.8)	(0.7-1.8)	(1.8-4.3)
<i>IL-1RN</i> *2*2	1.3	1.7	4.8
	(0.5-3.3)	(0.7-3.7)	(2.5-9.3)
TNF-A-308*A+	0.9	1.0	1.9
	(0.5-1.5)	(0.6-1.7)	(1.2-2.8)

El-Omar et al, Gastroenterology, 2003; 124: 1193-1201

Conclusions

- Study of host genetic factors is very important for understanding pathogenesis of disease
- The markers we have at present are not sensitive/specific enough to form the basis of a screening strategy
- New genotyping technologies may allow the definition of better predictive haplotypes
- Ultimately, our aim should be to prevent gastric cancer and this could only be achieved by removing H. pylori from the equation